Changes of Endogenous Levels of ABA, IAA and GA-like Substances in Fruitlets of Parthenocarpic Persimmon

Kiyohide Kojima¹ *, Keishi Shiozaki¹ , Yoshiko Koshita² ** and Masashi Ishida¹

¹ Faculty of Agriculture, Kyoto Prefectural Univ., Shimogamo, Sakyo-ku, Kyoto 606
² Department of Citriculture, Kuchinotsu, National Institute of Fruit Tree Science, Kuchinotsu, Nagasaki 859-25

Summary

The reproductive organ of parthenocarpic persimmon (Diospyros kaki Thunb. ‘Hiratanenashi’) was sampled from -5 to 122 days after flowering (DAF). The endogenous levels of abscisic acid (ABA) and indole-3-acetic acid (IAA) were analyzed by gas chromatograph-mass spectrometry (GC-MS), and those of gibberellin (GA)-like substances were determined by the dwarf rice bioassay. Fruitlet abscission occurred mainly from 1 to 62 DAF and peaked at 41 DAF. A relatively rapid increase of fresh weight of fruitlets occurred until 41 DAF; thereafter, the growth rate was moderate. The weight of the calyx increased until 13 DAF. The ABA concentrations in fruitlets was higher from flowering to 28 DAF than the remainder period. The calyx at 13 DAF had the maximum ABA concentration of all parts analyzed. IAA in the ovary/fruitlet increased about 18 times in content and 5 times in concentration from -5 to 0 DAF, and decreased to less than half in content by 13 DAF. The concentration of GA-like substances in fruitlets at flowering was also high, and increased at 41 and 122 DAF. At 5 days before flowering, the calyx had a higher concentration and content of three phytohormones than the ovary. These results suggest that the genetic increases of IAA and GA-like substances in the fruitlet of the parthenocarpic persimmon during flowering may result in continued growth, but the interaction between increased ABA and decreased IAA and GA-like substances in the fruitlet before fruitlet-drop may induce its abscission.

Key Words: abscisic acid, calyx, fruit set, indole-3-acetic acid, parthenocarpy.

Introduction

The production of seedless fruits is one of the most important horticultural objectives. Parthenocarpy, which grows seedless fruit, is believed to be regulated by several phytohormones (Schwabe and Mills, 1981), as is fruitlet abscission (Addicott, 1982). Thus in development of chemical control techniques of fruit thinning, growth, quality and harvesting, it is important to determine precisely the changes of endogenous phytohormone levels. Recently the endogenous phytohormones of fruits have been determined with GC-MS using internal standards in orange (Kojima, 1995), parthenocarpic mandarin (Kojima et al., 1996b) and pollinated citrus (Kojima, 1996).

In persimmon fruits, endogenous levels of phytohormones have been investigated by bioassays. Sobajima et al. (1969) assayed auxin levels in relation to the physiological abscission of fruitlets. Hirata et al. (1978) assayed the endogenous levels of main five phytohor-
flower buds were tagged and observed for abscission weekly from May 30 to September 25. For hormonal analysis, at least 50 reproductive organs were collected on each sampling date, 5, 10, 13, 28, 41, 61, 90 and 122 DAF. As for 61, 90 and 122 DAF, each of the fruitlet sampled was immediately separated into flesh and peel (Fig. 2- A–I). From the separated flesh tissue, only central part which includes axial bundles was excised from the central axis region; all separation procedures were performed in a chilled box kept below 5°C. The separated tissues were immediately weighed, frozen in liquid nitrogen and stored at -40°C until analyzed.

2. Phytohormone Purification

Soluble polyvinylpyrrolidone and butylated hydroxytoluene were added to the sample, which was homogenized in 80% ethanol and filtered (Kojima, 1995). The filtrate was divided into two portions; equivalent to 4 g fresh weight (gFW) for ABA and IAA analysis, and equivalent to 20 gFW for GA-like activity analysis.

3. ABA and IAA Analysis

Both d4-ABA [purity 99%, purchased from Shoko Co., LTD, Tokyo, synthesized according to the method of Rivier et al. (1977)] and 13C-AA (Kojima, 1995) were added to the filtrate as the internal standards. The purification was performed according to the method of Kojima (1995, 1996). The filtrate was evaporated to the aqueous phase, which was acidified, filtered through membrane filter and partitioned against diethyl ether.

Dried ether extract was dissolved with 30% methanol and fractionated with an HPLC system equipped with a UV detector. The HPLC column was Developsil ODS-5 (150 × 6.0 mm I.D., Nomura Chem. Co., LTD, Aichi) maintained at 40°C. The sample was eluted with 30% methanol solution (20 mM acetic acid) at a flow rate of 1.5 ml/min. The effluents corresponding to the retention time of ABA and IAA were collected separately.

The fractions of methylated ABA and IAA samples were injected into a GC-MS with selected ion monitoring (Kojima, 1995; 1996). IAA content was calculated by monitoring ion m/e 189 and 195. ABA content was calculated by the methods of Rivier et al. (1977) monitoring ion m/e 190 and 194.

4. GA-like Substances Analysis

Purification was performed according to the method of Kojima (1995, 1996): The filtrate equivalent to 20 gFW was evaporated to the aqueous phase, which was acidified, filtered through membrane filters and partitioned against ethyl acetate. The organic layer was partitioned against 0.5 M K2HPO4. The acidified aqueous phase was partitioned against ethyl acetate (EtAc). The dried EtAc extracts were purified with Sepalylte DEA.

The dried extracts were dissolved in 30% methanol and fractionated with the above-mentioned HPLC system. The sample was eluted with a gradient of methanol in 0.1% acetic acid at a flow rate of 1.35 ml min⁻¹ (Ogata et al., 1996). The methanol concentration was increased linearly from 30 to 80% until 25 min, held at 80% until 45 min, increased linearly to 100% until 46 min, held at 100% until 60 min, decreased linearly to 30% until 61 min, and held at 30% until 80 min. The effluent was collected at 4-min interval until 48 min (12 fractions). The fraction was dried and dissolved in 50% acetic.

The bioassay procedure was similar to the ‘modified micro-drop bioassay’ (Nishijima and Katsura, 1989): Dwarf rice seeds were treated with GA synthesis inhibitor. The fraction was applied on 10 seedlings. After the calculation as GA₃ equivalent, 12 values from 12 fractions were summed up as the value of GA-like substances.

Results

1. Abscission and Growth

Figure 1–A shows a change of an abscission rate in the ovary/fruitlet of the parthenocarpic persimmon.

![Fig. 1. Changes in abscission rate (A) and fresh weights (B) of the reproductive organs in parthenocarpic persimmon.](image)
Fruitlet abscission occurred mostly from 13 to 62 DAF, peaking at 41 DAF.

Figure 1-B shows changes of fresh weights in the reproductive organs. The increase in the fruitlet weight from 61 to 122 DAF was mainly contributed by the increase in the flesh weight. The fresh weight of the ovary/fruitlet increased linearly as a steep slope on a logarithmic scale from -5 to 41 DAF, and thereafter increased as a gentle slope (insert in Fig. 1-B). The calyx weighted more than the ovary before flowering; its weight increased until 13 DAF.

2. Endogenous Phytohormones

Figure 2 shows changes of levels of ABA, IAA and GA-like substances in the developing reproductive organs. ABA concentration in the ovary/fruitlet was higher from 0 to 28 DAF than the remainder period (Fig. 2-A-I). Within the fruitlet from 61 to 122 DAF, ABA concentrations decreased in the flesh and peel and increased in the axis. In the calyx, ABA concentration reached maximum at 13 DAF and then declined. ABA content in the ovary/fruitlet continued to increase from -5 to 61 DAF (Fig. 2-A-II). ABA content in the calyx from -5 to 13 DAF was higher than in the ovary/fruitlet.

IAA concentration of the ovary/fruitlet showed a sharp peak at flowering and increased again at 122 DAF (Fig. 2-B-I). IAA content of the ovary/fruitlet increased about 18 times from -5 to 0 DAF and decreased to less than half at 13 DAF (Fig. 2-B-II). IAA concentration increased in the peel at 90 DAF and substantially in the flesh at 122 DAF (Fig. 2-B-II). IAA concentration in the calyx was higher than that in the fruitlet.

Fig. 2. Changes in concentrations (I) and contents (II) of ABA (A), IAA (B) and GA-like substances (C) of the reproductive organs. GA-like substances are expressed as GA3 equivalents detected by the rice bioassay. For ABA and IAA, means of three determinations and their SE are shown (n=3), and where vertical bars are not shown the limits are within the dimensions of the symbols.
before flowering, tended to decrease to 41 DAF and thereafter increased.

The changing pattern of concentration of GA-like substances differed from those of ABA and IAA (Fig. 2 - A, B, C - I). It should be considered that values of ABA and IAA were determined only as active forms, whereas values of GA-like substances included their precursors. The concentration and content of GA-like substances in the ovary/fruitlet increased rapidly at 0, 41 and 122 DAF (Fig. 2 - C - I, II). In the fruitlet, the changing pattern of the axis and the peel differed from that of the flesh (Fig. 2 - C - I). The calyx kept nearly constant content from 28 to 122 DAF (Fig. 2 - C - II).

Discussion

The persimmon fruit has a double-sigmoid growth curve which is divided into three stages. Hirata and Hayashi (1978) determined the period of these stages in the persimmon 'Hiratanenashi': stage I, 0–81; stage II, 82–119; stage III, 120–146 DAF. The distinction between cell division and cell expansion is also important for the investigation of the mechanism of the fruitlet growth (Gillaspy et al., 1993). It was reported that in the 'Hiratanenashi' fruitlet cell division of the flesh stopped at 28 DAF (Hirata and Hayashi, 1978).

1. Fruitlet Growth and ABA

Our study showed that the calyx contained high concentrations of ABA at an early stage (Fig. 2 - A - I). Yonemori et al. (1995) found that in the persimmon 'Hiratanenashi', calyx removal at the early stage inhibited fruitlet growth and decreased the ABA content of the fruitlet. The fruitlet had higher concentrations of ABA during one month after flowering than after 41 DAF (Fig. 2 - A - I). The high concentrations of ABA of fruitlets just after flowering were also observed in tomato (Kojima et al., 1993), parthenocarpic mandarin (Kojima et al., 1996b) and pollinated citrus (Kojima, 1996). The positive effects of ABA on the fruitlet growth have been reported in citrus (Kojima et al., 1995) and strawberry (Ofosu - Anim et al., 1996). Thus, there is the possibility that ABA in the fruitlet and calyx may promote fruitlet growth at the early stage.

2. Fruitlet Growth, and IAA and GA-like Substances

In an early period of cell division, the fruitlet had the sharp peak of IAA concentration (Fig. 2 - B - I), confirming the tendency examined by the auxin bioassay (Hirata et al., 1978). The level of GA-like substances of the fruitlet also increased at the same period (Fig. 2 - C - I, II), which coincided with the previous report (Hirata et al., 1978). In the parthenocarpic fruitlet in this period, the increases of auxin level were reported in tomato (Mapelli et al., 1978) and citrus (Kojima, 1997), and the increases of GA-like substances level were reported in tomato (Mapelli et al., 1978) and grape (Wang et al., 1993). In the present study, pollination had been per-
the promotion of fruitlet abscission by ABA is a harmful side effect which can not be avoided, or a positive effect for decrease of fruit loads.

The concentration of GA-like substances in the fruitlet decreased before the abscission peak (Fig. 2-C-I). The external application of GA$_3$ to the fruitlet of the persimmon ‘Hiratanenashi’ from full bloom to 20 days later inhibited fruitlet abscission (Hasegawa et al., 1991). Additionally, it was reported that the decrease of endogenous GAs level by the application of GA biosynthesis inhibitor stimulated markedly abscission of citrus fruitlets (Kojima et al., 1996a). Thus the decrease of GA-like substances level in the fruitlet may also induce its abscission.

In conclusion, it is suggested that IAA and GA-like substances in the fruitlet increased at flowering play a role in the continuance of its growth, and the increase of ABA and the decreases of IAA and GA-like substances in the fruitlet induce its abscission cooperatively.

Acknowledgments

We thank Dr. M. Nakano and T. Kataoka of Kyoto Prefectural Univ. for valuable suggestions, students of the pomology course for assistance of covering flower buds and Prof. Y. Niimi of Niigata Univ. for correcting the manuscript. A part of this research was supported by Nagai research fund.

Literature Cited

Hasegawa, K., N. Kuge, T. Mimura and Y. Nakajima. 1991. Additionally, it was reported that the decrease of endogenous GAs level by the application of GA biosynthesis inhibitor stimulated markedly abscission of citrus fruitlets (Kojima et al., 1996a). Thus the decrease of GA-like substances level in the fruitlet may also induce its abscission.

