HOME    Nuar Information    mypage        Japanese    Feedback

新潟大学学術リポジトリ Nuar >
020 教育学部 = Faculty of Education >
10 学術雑誌論文 = Journal Article  >
10 査読済論文 = Postprint  >


Files in This Item:

File Description SizeFormat
ZQ_53(7)_734-739.pdf1055KbAdobe PDF
Title :放射光による遮熱コーティングの酸化損傷とはく離応力の解析
Title alternative :Oxidization of Thermal Barrier Coatings and Spalling Stress Analyzed with Synchrotron X-Rays
Authors :鈴木, 賢治
久保, 貴博
田中, 啓介
秋庭, 義明
尾角, 英毅
Publisher :日本材料学会
Issue Date :Jun-2004
Journal Title :材料
Volume :53
Issue :7
Start Page :734
End Page :739
ISSN :0514-5163
Abstract :As the bond coating, NiCoCrAlY powder was atmospheric plasma-sprayed on the Ni based super-alloy (In738LC), and the thickness of the bond coating was 0.15mm. Zirconia powder with 8mass% yttria was atmospheric plasma-sprayed as the top coating, and the thickness was 0.3mm. To oxidize the specimen, the specimens were kept in air at 1373K for 0, 500, 1000 and 2000h. The cross section of each oxidized specimen was observed with a scanning electron microscope. The thermally grown oxide (TGO) consists of the alumina layer and the composite oxide layer. The thickness of alumina layer stopped to increase after 500h exposure, while the thickness of the composite oxide layer incresed monotonically. The TGO grew at the convex part of the bond coating, and pushed up the top coating. As a result, the spalling crack was initiated near the convex part. The spalling stress for each oxidized specimen was estimated by the hybrid method using the stress data obtained by laboratory X-rays and high energy synchrotron X-rays. The top coating without the oxidization did not have the spalling stress. For the oxidized specimen, the spalling stress was small beneath the surface, and steeply increased near the interface between the top and the bond coating. The spalling stress near the interface was about 200MPa. The distribution of the spalling stress for the case of the 1000h exposure was similar to that for the case of 500h. The TGO promotes the spallation of the top coating, and the distribution of the spalling stress corresponds to the observed position of spalling cracks.
Keywords :Thermal barrier coating
Spalling stress
Synchrotron radiation
Thermally grown oxide
Residual stress
Type Local :学術雑誌論文
Language :jpn
Format :application/pdf
URI :http://hdl.handle.net/10191/17658
fullTextURL :http://dspace.lib.niigata-u.ac.jp/dspace/bitstream/10191/17658/1/ZQ_53(7)_734-739.pdf
Appears in Collections:10 査読済論文 = Postprint

Please use this identifier to cite or link to this item: http://hdl.handle.net/10191/17658